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ABSTRACT  

This report deals with the formulation, implementation, and testing of three numerical 

techniques based on (i) a full multiphase approach, (ii) a MUlti-SIze Group (MUSIG) 

approach, and (iii) a Heterogeneous MUSIG (H-MUSIG) approach for the prediction of 

mixing and evaporation of liquid droplets injected into a stream of air flowing inside a 

combustion chamber. The numerical procedures are formulated following a Eulerian 

approach, within a pressure-based fully conservative Finite Volume method equally 

applicable in the subsonic, transonic, and supersonic regimes, for the discrete and continuous 

phases. The k-ε  two-equation turbulence model is used to account for the droplet and gas 

turbulence with modifications to account for compressibility at high speeds. For the purpose 

of comparing the performance of the various methods, three configurations involving stream-

wise and cross-stream spraying in rectangular and cylindrical domains are investigated and 

solutions for evaporation and mixing in the subsonic and supersonic regimes for droplets 

sprayed in turbulent flow streams are generated. Results, displayed in the form of droplet 

velocity vectors, contour plots, and axial profiles indicate that solutions obtained by the 

various techniques exhibit similar behavior. Differences in values are relatively small with the 

largest being associated with droplet volume fractions and vapor mass fraction in the gas 

phase. This is attributed to the fact that with MUSIG and H-MUSIG no droplet diameter 

equation is solved and the diameter of the various droplet phases are held constant, as 

opposed to the full multiphase approach. 
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Nomenclature 
AP

(k ) ,..  coefficients in the discretized equation for ! (k ) . 

BP

(k )  source term in the discretized equation for ! (k ) . 

Bij  breakup rate. 

!Bij  breakup frequency. 

C!

(k )  coefficient equals to 1/ R
(k )

T
(k) . 

D
C  drag coefficient. 

cP  specific heat at constant pressure. 

Cij  coalescence rate. 

d  droplet diameter. 

ds  Sauter diameter. 

D P

(k )[! (k )]  the Matrix D operator. 

f  population fraction. 

F
B  Body force. 

F
D  drag force. 

h  static enthalpy. 

hcorrection  correction coefficient for heat transport in droplet model. 

HP[!
(k ) ]  the H operator. 

][ )(k
P

uH  the vector form of the H operator. 

mcorrection  correction coefficient for mass transport in droplet model. 

d
m!  mass rate of droplet evaporation. 

d
M!  volumetric mass rate of droplet evaporation. 
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n  number density distribution function. 

Pk  production term in k  and !  equations. 

p pressure. 

Pr  laminar Prandtl number of fluid/phase k. 

Prt  turbulent Prandtl number of fluid/phase k. 

 
!q  heat flux. 

� 

Q(k ) general source term of fluid/phase k. 

� 

R(k )  gas constant for fluid/phase k. 

Red Reynolds number based on the droplet diameter. 

S source term. 

fS  surface vector. 

Sc Schmidt Number. 

t time. 

� 

T  temperature of fluid/phase k. 

� 

U f  interface flux velocity v f

(k ).S f( ) . 

� 

u velocity vector. 

u,v velocity components in x- and y-direction, respectively. 

X jki  mass fraction due to coalescence between groups j and k, which goes into group i. 

� 

Y  vapor mass fraction. 

GREEK SYMBOLS 

� 

!  volume fraction. 

� 

!(k ) thermal expansion coefficient for phase/fluid k.  

!  Kolmogorov micro-scale.  

δt time step. 

� 

!  density. 

!  the stress tensor. 
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� 

!  conductivity coefficient. 

!c  coalescence efficiency. 

! c  collision frequency. 

� 

!  diffusion coefficient. 

� 

!  general scalar quantity. 

!hv  latent heat. 

� 

!P "(k )[ ] the Δ operator. 

� 

µ,µturb ,µeff laminar, turbulent and effective viscosity of fluid/phase k. 

Ω cell volume. 

σ1,σ2 turbulence model constants. 

 

SUBSCRIPTS 

d refers to the droplet discrete liquid phase. 

E refers to energy equation. 

eff refers to effective values. 

g refers to the gas phase. 

i refers to phase i. 

k refers to turbulent kinetic energy equation. 

nb refers to the east, west, … face of a control volume. 

NB refers to the East, West, … neighbors of the main grid point. 

P refers to the P grid point. 

s refers to the droplet surface condition. 

sat refers to the saturation condition. 

ε refers to turbulent eddy dissipation equation. 

ω  refers to turbulent eddy frequency equation. 

vap,g refers to the vapor specie in the gas phase. 
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INTRODUCTION  

This report deals with the formulation, implementation, and testing of three pressure-based 

numerical techniques for the prediction of mixing and evaporation of liquid fuel injected into 

a supersonic stream of air flowing inside a combustion chamber.  

Recently there has been a revived interest in the injection of liquids in supersonic streams, 

particularly with respect to fuel injection techniques for hypersonic flights. These designs 

require air-breathing engines capable of supersonic combustion. The scramjet (supersonic 

combustion ramjet), appears at present to be a practical engine for these types of applications 

since it is capable of producing useful thrust at hypersonic speeds, using supersonic flow 

through the combustor. The scramjet concept itself is fairly old, and was the subject of studies 

throughout the 1960s and again in the 1980s. However, its coming to fruition depends among 

other things on the development of numerical tools for the simulation of its supersonic 

combustion process and related phenomena. More specifically effective penetration and 

enhanced mixing of hydrocarbon fuels in a gas flowing at supersonic speed is a crucial 

ingredient for the success of any scramjet design [1]. Three key issues govern the 

performance of the liquid injection process in the scramjet engine, namely:  the penetration of 

the fuel into the free-stream, the atomization of the injected fuel drops, and the level of 

fuel/air mixing [2]. It is important for the fuel to penetrate effectively into the free-stream so 

that the combustion process produces an even temperature distribution otherwise it will 

mostly occur along the surface of the combustor, causing inefficient combustor operation and 

increased cooling problems. Rapid atomization of the fuel is also required for efficient 

combustion. Increased atomization of the liquid fuel results in increased fuel/air mixing which 

allows a higher percentage of the fuel to be burnt in the short time before the entire mixture 

passes out of the combustor (generally the flow residence time is of the order of few 

milliseconds [3]). This paper is aimed at developing three numerical methods capable of 

predicting the spreading and evaporation of liquid droplets injected in gases flowing at all 

speeds.  



            7 

 

The complex multi-phase flow phenomenon governing liquid injection applications involves 

a continuous gas phase usually composed of air and the evaporating vapor species from the 

fuel and one or more dispersed liquid phases. Moreover, the phenomenon also entails 

turbulent effects. Approaches for the simulation of droplet transport and evaporation in 

combustion systems can be classified under two categories, namely the Lagrangian and 

Eulerian methods. Within both methods the gaseous phase is calculated by solving the 

Navier-Stokes equations with a standard discretization method such as the Finite Volume 

Method.  

In the Lagrangian approach [4,5,6], the spray is represented by discrete droplets which are 

advected explicitly through the computational domain while accounting for evaporation and 

other phenomena. Due to the large number of droplets in a spray, each discrete computational 

droplet is made to represent a number of physical droplets averaging their characteristics. The 

equations of motion of each droplet are a set of ordinary differential equations (ODE) which 

are solved using an ODE solver, a numerical procedure different from that of the continuous 

phase. To account for the interaction between the gaseous phase and the spray, several 

iterations of alternating solutions of the gaseous phase and the spray have to be conducted. 

Therefore, the computational effort for strongly interacting two-phase flows with the 

Lagrangian method is rather large. Furthermore, for turbulent flow simulation the above 

model has to be augmented with a stochastic or Monte-Carlo approach.   

In the Eulerian approach [5,6,7,8], the evaporating spray is treated as an interacting and 

interpenetrating continuum, in analogy to the continuum approach of single phase flows, each 

phase is described by a set of transport equations for mass, momentum and energy extended 

by interfacial exchange terms. This description allows the gaseous phase and the spray to be 

discretized by the same method, and therefore to be solved by the same numerical procedure. 

Because of the presence of multiple phases a multiphase algorithm is used rather than a 

single-phase one.  
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In this work, the numerical foundations for the simulation of supersonic droplet evaporation 

and scattering are developed. This is achieved by following a Eulerian-Eulerian approach 

using:  
1- the full multiphase flow model, 

2- the Multi-Size-Group model (MUSIG), and 

3- the Heterogeneous Multi-Size-Group model (H-MUSIG). 

The three approaches are implemented within an all speed pressure-based finite volume flow 

solver in which a droplet evaporation model is implemented. The k-ε [9] two-equation 

turbulence model has been used to account for the droplet-gas turbulence with modifications 

for supersonic flows. Droplet turbulence is estimated using an algebraic model based on the 

Boussinesq approach [7,10,11]. Different droplet sizes are considered and droplet breakup 

and coalescence [12,13] are modeled and their effects incorporated into the conservation 

equations via source terms. The use of an Eulerian approach has many advantages: same 

validated numerical procedure used for all phases, ease of implementation of acceleration 

techniques, and improvements to code can be carried over to all phases.  

In the remainder of this document, the governing conservation equations for both gas and 

liquid droplet phases and their discretization procedure are first presented. This is followed by 

a detailed description of the three solution methodologies. The resulting algorithms are used 

to solve three physical configurations: (i) streamwise injection into a subsonic and supersonic 

stream flowing in a rectangular domain, (ii)  cross-streamwise injection into a supersonic 

stream flowing in a rectangular domain are given, and (iii) streamwise injection into a 

supersonic stream flowing in a cylindrical domain. Results presented in the form of droplet 

and gas velocity, pressure, gas temperature, vapor mass fraction, air volume fraction, and gas 

turbulent viscosity fields and profiles are compared and conclusions drawn. 

THE GOVERNING EQUATIONS 

When describing multiphase flow phenomena it is implied that more than one phase exist 

within a small volume at any particular time. This view rests on the idea of time and space 
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averaging [14,15] and is equivalent to treating each phase as a continuum in the space under 

consideration, which requires choosing a proper scale with regard to the control volume used. 

For a multi-phase system the equations are derived over a representative element volume 

within which the different phases are present.  

Except for the near region of the injector where the spray is dense, the volume fraction of the 

spray is low.  In this dilute multi-phase flow regime, interaction between droplets can be 

neglected.  Starting from the Navier-Stokes equations, instantaneous transport equations for 

the gas and droplet phase can be derived either by spatial, temporal, or ensemble averaging. 

However, these transport equations can only be used for the description of sprays in laminar 

gas flows. Since combustors generally operate in the turbulent regime, the system of 

equations is extended by introducing turbulent fluctuations of the transport quantities 

followed by Reynolds averaging of the equations. For the gaseous phase, the standard k-ε 

model is employed, while an algebraic model based on a Boussinesq approach approximates 

the turbulence terms in the droplet phase transport equations. The interacting flow fields are 

described by the transport equations presented next. 

GAS EQUATIONS 

The continuity, momentum, energy, turbulence kinetic energy, and turbulence dissipation rate 

equations for the gas phase, which is composed of two species namely air and vapor, in 

addition to the mass fraction equation of the fuel vapor in the gaseous phase, are respectively 

written as: 

 

!
!t

" g#g( ) + $. " gug
#g( ) = $.

µt ,g

Sct ,g

$" g

%

&
'

(

)
* + !Mvap,g  (1) 

 

!

!t
" g#gug( ) + $. " g#gug

u
g( ) = %" g$p + $.& g + Fg

B + Fg

D + !Mvap,gud
 (2) 

!

!t
" g#gkg( ) + $. " g#gug

kg( ) = $. " gµeff ,k ,g$kg( ) +" g Pk % #g&g( ) + Sk ,d  (3) 

!
!t

" g#g$g( ) + %. " g#gug
$g( ) = %. " gµeff ,$ ,g%$g( ) +" g C$1

$g

kg

Pk & C$ 2#g

$g

2

kg

'

(
)

*

+
, + S$ ,d  (4) 

 

!
!t

" g#ghg( ) + $. " g#gug
hg( ) = %$ & !qg + $.

µturb,g

Prt
$hg

'

()
*

+,
+ Sh,g + !Mvap,ghvap,s  (5) 
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!

!t
" g#gYvap,g( ) + $. " g#gug

Yvap,g( ) = $. " g%Yvap ,g ,eff$Yvap,g( ) + !Mvap,g 1&Yvap,g( )  (6) 

DROPLET BALANCE EQUATIONS 

Droplet evaporation is simulated by means of the Uniform Temperature model [16,17]. This 

computationally effective droplet model is based on the assumption of a homogeneous 

internal temperature distribution in the droplet and phase equilibrium conditions at the 

surface. The analytical derivation of this model does not consider contributions to heat and 

mass transport through forced convection by the gas flow around the droplet.  Forced 

convection is taken into account by means of two empirical correction factors 

( )
correctioncorrection

handm  [18].   

 

!
!t

"d ,i#d ,i( ) + $. "d ,iud,i#d ,i( ) = $.
µturb,d ,i

Scturb,d ,i

$"d ,i

%

&'
(

)*
+ !Md ,i  (7) 

 

!

!t
"d ,i#d ,iud ,i( ) + $. "d ,i#d ,iud ,iud ,i( ) = %"d ,i$p + Fi

B + Fi

D + !Md ,iud,i  (8) 

 

!
!t

"d ,i#d ,ihd ,i( ) + $. "d ,i#d ,iud,ihd ,i( ) = $. "d ,i
µturb,d ,i

Prturb,d ,i

$hd ,i

%

&'
(

)*
+

hd ,i$.
µturb,d ,i

Scturb,d ,i

$"d ,i

%

&'
(

)*
++Di

2,*
Tg - Td ,i( ) + !Md ,i .hv + hd ,i( )

 (9) 

where 

 

!Md ,i
i

! = " !Mvap = "
6#d ,i

$di

3 !mvap,i
*

i

!  (10) 

 
!mvap,i

* = mcorrection,i !mvap,i  (11) 

 

!Qcond ,s,i
* = !di

2
" i

*
Td ,i # Tg( )  (12) 

 

!Hvap,s,i
* = !mvap,i

*
cp,vap,ref ,i Td ,i ! Tg( )  (13) 

 

!mvap,i = 2!di"g,ref ,i# im,ref ,i ln
1$Yvap,g,i

1$Yvap,s,i

 (14) 

 

!i

* = hcorrection,i

!mvap,icp,vap,ref ,i

"di

2

exp
!mvap,icp,vap,ref ,i

2"di#g,ref ,i

$

%&
'

()
*1

 (15) 
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mcorrection,i = 1+ 0.276Red ,i
1/2

Sci

1/3  (16) 

hcorrection,i = 1+ 0.276Red ,i
1/2 Pri

1/3  (17) 

µturb,d ,i = µturb,g
!d ,i

!g

kd ,i

kg

 (18) 

For an N-phase flow, the volume fractions α(k) are characterized by the condition: 

!
(k )

k=1

N

" = 1  (19) 

The ratio of the turbulent kinetic energies of a dispersed (d) and gas (g) phase is calculated 

following the approach in [7,11]: 

kd

kg

=
1

1+!
2
"

2  (20) 

where  

kd =
1
2

!ud " !ud  (21) 

Since in general the droplets do not follow the motion of the surrounding fluid from one point 

to another it is expected for the ratio kd / kg  to be different from unity and varies with particle 

relaxation time t and local turbulence quantities. Krämer [11] recommends the following 

equation for the frequency of the particle response: 

! =
1
"

2
3 kg

Lx

"
#

$
%%

&

'
((

1/4

" =
1

18
)d

)g

D
2

*
1

1+ 0.133Red

0.687

 (22) 

with a characteristic macroscopic length scale of turbulence given by 

Lx = cµ( )3/4 kg( )3/2

!g

 (23) 
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DISCRETIZATION PROCEDURE 

A review of the above differential equations reveals that they are similar in structure.  If a 

typical representative variable associated with phase (k) is denoted by ! (k ) , the general fluidic 

differential equation may be written as: 

! " (k )#(k )$ (k )( )
!t

+ %. " (k )#(k )
u

(k )$ (k )( ) =%. " (k )&(k )%$ (k )( ) +" (k )
Q

(k )  (24) 

where the expression for Γ(k) and Q(k) can be deduced from the parent equations.  

The general conservation equation (24) is integrated over a finite volume to yield: 

! " (k )#(k )$ (k )( )
!t

d%
%
&& + '. " (k )#(k )

u
(k )$ (k )( )d%

%
&& = '. " (k )((k )'$ (k )( )d%

%
&& + " (k )

Q
(k )

d%
%
&&   (25) 

Where Ω is the volume of the control cell. Using the divergence theorem to transform the 

volume integral into a surface integral, replacing the surface integrals by a summation of the 

fluxes over the sides of the control volume, and then discretizing these fluxes using suitable 

interpolation profiles the following algebraic equation results: 

AP

(k )!P

(k ) = ANB

(k )!NB

(k )

NB

" + BP

(k )  (26) 

In compact form, the above equation can be written as 

! (k ) = HP ! (k )"# $% =
ANB

(k )!NB

(k )

NB

& + BP

(k )

AP

(k )  (27) 

An equation similar to equation (26) is obtained at each grid point in the domain and the 

collection of these equations forms a system that is solved iteratively.  

The discretization procedure for the momentum equation yields an algebraic equation of the 

form: 

uP

(k ) = HPP u
(k )!" #$ %&

(k )
DP

(k )'P P( )  (28) 

Furthermore, the phasic mass-conservation equation can be viewed as a phasic volume 

fraction equation, which can be written as:  

!P

(k ) = HP ! (k )"# $%  (29) 

or as a phasic continuity equation to be used in deriving the pressure correction equation: 

 

!P

(k )"P

(k )( ) # !P

(k )"P

(k )( )Old

$t
% +&P ! (k )"(k )

u
(k )

.S'( )* = ! (k ) !M
(k )  (30) 
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where the ∆ operator represents the following operation: 

!P "[ ] = " f

f =nb(P )
#  (31) 

PRESSURE CORRECTION EQUATION 

To derive the pressure-correction equation, the mass conservation equations of the various 

fluids are added to yield the global mass conservation equation given by: 

!P

(k )"P

(k )( ) # !P

(k )"P

(k )( )Old

$t
% +&P ! (k )"P

(k )
u

(k )
.S( )

'
(
)

*)

+
,
)

-)k

. = 0  (32) 

Denoting the corrections for pressure, density, and velocity by ! P , )( !ku , and )( !k" , 

respectively, the corrected fields are written as: 

 
P = P

! + !P ,u(k ) = u
(k )* + u

(k !) ,"(k ) = "(k )! + "(k !)  (33) 
Combining equations (28), (32), and (33), the final form of the pressure-correction equation is 

obtained as [19]: 

 

!
"t

rP

(k )!
C#

(k ) $PP + %P r
(k )!

U
(k )*

C#
(k ) $P&' () * %P r

(k )!#(k )*
r

(k )!
D

(k )+ $P( ).S&
'

(
)

,
-
.

/
0
1k

2  

= *
rP

(k )!#P

(k )* * rP

(k )#P

(k )( )old

"t
! + %P r

(k )!#(k )*
U

(k )*&' ()
,
-
3

.3

/
0
3

13k

2
 (34) 

The corrections are then applied to the velocity, density, and pressure fields using the 

following equations: 

 
uP

(k )* = uP

(k )! ! r
(k )!

DP

(k )"P #P , P
* = P

! + #P , $(k )* = $(k )! + C$
(k ) #P  (35) 

THE MULTIPHASE FLOW MODEL 

In the multiphase model, displayed schematically in Figure 1, the dispersed phase is 

subdivided into N size group classes where each class is treated as a continuum phase in the 

calculation. Although this model can describe a real multi-phase flow problem however the 

number of coupled equations associated with this model is very large. The number of size 

groups should therefore be limited to low values due to the extensive numerical effort of the 

coupled equations.  
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In order to keep track of the droplet size, an additional diameter equation is solved for every 

droplet phase. This equation is derived based on mass conservation and is given by  

 

!
!t

"d ,i#d ,idi( ) + $. "d ,iud,i#d ,idi( ) = $. "d ,i
µturb,d ,i

Prturb,d ,i

$di

%

&'
(

)*
+ di$.

µturb,d ,i

Scturb,d ,i

$"d ,i

%

&'
(

)*
+

4
3

di
!Md ,i  (36) 

This multi-phase model, is an extension of the work performed in [20]. Results generated 

using this model are the baseline against which results generated using the MUSIG and H-

MUSIG models are compared.  

FULL MULTIPHASE SOLUTION PROCEDURE 

The overall solution procedure is an extension of the single-phase SIMPLE algorithm [21,22] 

into multi-phase flows [19]. The sequence of events in the MCBA-SIMPLE is as follows: 

1. Solve the fluidic momentum equations for velocities. 

2. Solve the pressure correction equation based on global mass conservation. 

3. Correct velocities, densities, and pressure. 

4. Solve the fluidic mass conservation equations for volume fractions. 

5. Solve the fluidic scalar equations (k, ε, T, Y, D, etc…). 

6. Return to the first step and repeat until convergence. 

THE MULTI-SIZE-GROUP MODEL (MUSIG) 

The MUSIG (MUltiple-SIze-Group) model [23,24] represents a further development of the 

multiphase model outlined above. The MUSIG model was originally developed for the 

prediction of bubbles in water and has never been used for the prediction of mixing and 

evaporation of liquid droplets in a stream of gas. It is the intention of this work to extend the 

applicability of MUSIG to such configuration. 

As a first step for decribing the MUSIG model, an explanation of the population balance 

approach is provided. This is followed by the model description, the equations involved, and 

the break up and coalescence models used. 
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POPULATION BALANCE APPROACH 

In spray modeling, a wide range of particle sizes and shapes exist at every point in the 

dispersed phase, which makes the description of the size and shape of the droplets very 

difficult. This difficulty is further magnified when break up and coalescence occur due to 

their great influence on the overall performance among the phases. Therefore it is essential in 

modeling spray flows to use a formulation that take into account the different size distribution 

of particles in addition to the birth and death processes that may be encountered [25]. This is 

accomplished through the use of the population balance approach.  

The formulation of the population balance could be either based on the Boltzmann transport 

equation or on continuum mechanics [26]. It represents the transport of the number density of 

the fluid through the space taking into account birth and death of particles due to breakup and 

coalescence. The fluid particle number density transport equations of particles having volume 

vi, i.e. group size i, is given as follows: 

!ni

!t
+ ". uni( ) = Si + Sph( )

i
 (37) 

The interaction term Si represents the net rate of change in the number density distribution 

function, ni, due to particle break-up and coalescence; in other words this term accounts for 

both the birth of particles of size i (due to either breakup of larger particles or coalescence of 

smaller ones) and death of particles of size i (also due to breakup and coalescence but this 

time of particles of size i which goes into other groups). A general representation of these 

source and sink terms is given as 

Si = BBi ! DBi + BCi ! DCi  (38) 

Moreover the term Sph is added to the population balance equation (Eq. (37)) in order to 

account for phase change since size change can occur because of birth due to nucleation, 

condensation and evaporation [27]. 

MUSIG MODEL DESCRIPTION 

In this model, displayed schematically in Figure 2, the dispersed phase is decomposed into N 

size groups chosen according to the problem at hand (say N=10) where all groups are treated 

as one continuum phase thus moving at the same speed and N continuity or population 

balance equations are solved. The single disperse phase is thus characterized by various size 
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groups, from which a local Sauter mean diameter is deduced. An accurate determination of 

the droplet Sauter diameter is crucial in order to calculate the interfacial area based on which 

the interphase heat and mass transfer and momentum drags could be evaluated.  

A discretization is performed in order to evaluate the diameter (di) of each size group. Any of 

the following three approaches can be used [24]: (a) the equal mass discretization, (b) the 

equal diameter discretization, (c) The geometric mass discretization. In all three methods the 

minimum and maximum diameters of the polydispersed fluid are set before beginning the 

calculations. 

MUSIG MODEL FORMULATION  

As described previously a continuity equation for each size group (a population balance 

equation) is solved, but it is assumed that all droplets move with the same velocity so that 

only one set of momentum equations for the dispersed phase has to be solved. 

let fi be the size fraction of the polydispersed phase which appears in group size i, ρd the 

density of the dispersed phase, if Equation (38) is multiplied by mi, it reduces to the 

following:  

   

!
d

=
m

i

"
i

& #
i
= n

i
"

i

#
i
= #

d
f

i

$

$t
!

d
#

d
f

i
( ) + % & (!

d
#

d
f

i
ui ) = S

i
+ S

ph( )
i

 (39)  

Since this model assumes that all particles have the same velocity, ui is replaced by ud 

(velocity of the dispersed phase) and the above equation reduces to 

!

!t
"d#d fi( ) + $. "d#d fiud( ) = Si + Sph( )

i
 (40) 

This equation has the form of the transport equation of a scalar variable fi, in the dispersed 

phase in which the source term Si accounts for the birth of droplets of size i due to breakup of 

droplets of larger size and coalescence of droplets of smaller size which go into i and death of 

droplets of size i due to both break up and coalescence encountered in this size group. 

Therefore the sum of this term over all size groups is equal to zero 

0
i

i

S =!  (41) 
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If summation over all size groups is performed, an overall continuity equation for the 

dispersed phase is derived. Performing this summation and noticing that !
=

=
Ni

i
f

,1
1 , the 

overall continuity equation for the dispersed phase is found as 

 

!

!t
"d#d f1( ) + $. "d#d f1ud( ) = S1 % f1

!Mvap,g

!

!t
"d#d f2( ) + $. "d#d f2ud( ) = S2 % f2

!Mvap,g

+ "

"

"

!

!t
"d#d fN( ) + $. "d#d fNud( ) = SN % fN

!Mvap,g

__________________________________________
!

!t
"d#d( ) + $. "d#dud( ) = % !Mvap,g

 (42) 

The continuity equation is therefore used to solve the population balance equations with the 

source term to be connected with the source of population balance equations. It is important 

to note here that no extra scalar equations are needed for the population balance equation 

[28]. 

After solving the population balance equations, the droplet sauter diameter which represents 

an average representation of the dispersed phase is calculated, and the  dispersed phase 

calculations  are then performed assuming the monodispersed phase with the diameter of the 

phase being equal to the local droplet Sauter diameter ds based on the values of the size 

fractions of the dispersed phase fi and discrete droplet sizes di given by: 

  

1
d

S

=
f

i

d
i

!

"#
$

%&i=1

N

'  (43) 

As in the multi-phase model, a continuity equation for each size group is solved, but it is 

assumed that all droplet velocities can be related to the average value in an algebraic manner, 

so that only one set of momentum equations for the gas phase is solved. This single disperse 

phase is characterized by various size groups, from which a local Sauter mean diameter is 

deduced. An accurate determination of the droplet Sauter diameter is crucial in order to 

calculate the interfacial area based on which the interphase heat and mass transfer and 

momentum drags could be evaluated.  
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The MUSIG model essentially reduces the multiphase approach described above back to a 

two-fluid approach with one velocity field for the continuous phase and one for the dispersed 

phase. However, the continuity equations of the particle size groups are retained and solved to 

represent the size distribution. With this approach, it is possible to consider a larger number of 

particle size groups (say 10, 20 or even 30 particle phases) to give a better representation of 

the size distribution. 

BREAK UP AND COALESCENCE MODELS 

Various models have been implemented for the calculation of the break-up and coalescence 

rates. The overall form of these models is similar, with different correlations used for 

coalescence and break-up depending on the nature of the flow [27]. 

The specific models that has been implemented for the break-up and coalescence rates are due 

to Luo and Svendsen [12] and Coulaloglou and Tavlarides [13].  

LUO AND SVENDSEN BREAKUP MODEL 

The net source to group i due to breakup (using any break up model) is: 
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The break-up rate Bij is assumed to be a function of the break-up fraction B'ij as follows: 

 

B
ij

= !B
ij

d

f
BV

" f
BV

 (45) 

This model is based on the following five main assumptions: 

1- The turbulence is assumed to be isotropic.  

2- Binary breakage of fluid particles is only considered (turbulent breakage and Shear 

breakage). The breakage volume fraction is assumed to be given by 

       fBV =
mi

mj

=
di

3

dj

3  (46) 

 Where dj is the diameter of a mother particle splitting into two particles of sizes di and 

  dj

3
! di

3( )1/3
. 
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3- The occurrence of breakup is determined by the energy level of the arriving eddy. The 

particle oscillation frequency is larger than the arrival frequency of eddies. This 

implies that eddies affect the particles independently in a way that once an eddy of 

sufficiently high energy arrives, the particle will break. 

4- Eddies of size scale smaller than or equal to the particle diameter induce particle 

oscillation and dominate the deformation of the particles in the flow field while larger 

eddies are responsible for the translatory motion of particles.   

The break-up frequency of a mother particle with size dj splitting into two particles of sizes di 

and dj

3
! di

3( )1/3
 is given by: 
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 (47)  

where FB is added as a calibration factor of the model, εg is the continuous phase eddy 

dissipation energy, σ is the surface tension, β=2, and ξ is the dimensionless size of eddies in 

the inertial subrange of isotropic turbulence. The lower limit of the integration is given by 

  
!min = 11.4

"

d
j

 (48) 

and the Kolmogorov micro-scale η is given by: 
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 (49) 

COULALOGLOU AND TAVLARIDES COALESCENCE MODEL 

Collisions may happen due to various mechanisms however this model only considers the 

collisions of droplets due to turbulence, buoyancy and laminar shear.  

The net source to group i due to coalescence is given as 

BCi ! DCi = "d#d( )2 1
2

Cjk f j fk

mj + mk

mjmk

X jki ! Cij fi f j
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+  (50) 
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where Cij is the specific coalescence rate between groups i and j and Xjki represents the 

fraction of mass due to coalescence between groups j and k which goes into i and is written as 

X jki =

mj + mk( ) ! mi!1

mi ! mi!1

if mi!1 < mj + mk( ) < mi

mi+1 ! mj + mk( )
mi+1 ! mi

if mi < mj + mk( ) < mi+1

1 if mj + mk " mmax = mi

0 otherwise

#

$

%
%
%
%

&

%
%
%
%

 (51) 

  
X

jki

i

! = 1 for all j,k  (52) 

When summed over all size groups, the net source due to coalescence is zero.  

The coalescence rate Cij of the dispersed phase drops in a turbulent flow field is described as 

the product of the collision frequency ! c di ,dj( )  and the corresponding coalescence 

efficiency !c di ,dj( )  as is written as 

Cij = ! c di ,dj( )"c di ,dj( )                                                                                               (53) 

In the Coulaloglou and Tavlarides [13] model it is assumed that the mechanism of collision in 

a locally isotropic flow field is analogous to collisions between molecules as in kinetic theory 

of gases, the collision frequency between two drops with volumes Ωi and Ωj are expressed as 

! c di ,dj( ) = Kc

"c

1 3

1+#d

di + dj( )2
di

2 3 + dj

2 3( )1 2
                                                            (54) 

The coalescence efficiency is based on the film drainage mechanism where the drops are 

considered to cohere together and be prevented by coalescence by a film of continuous phase 

trapped between them. The coalescence efficiency as suggested by Coulaloglou and 

Tavlarides is given as 

! di,dj( ) = exp "K
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MUISG SOLUTION PROCEDURE 

The overall two-phase MUSIG solution procedure is as follows: 

1. Solve the fluidic momentum equations for the gas and droplet phase for velocities. 

2. Solve the pressure correction equation based on global mass conservation. 

3. Correct velocities, densities, and pressure. 

4. Solve the fluidic mass conservation equations for droplet and air volume fractions. 

5. Calculate sources due breakup and coalescence. 

6. Solve the population fraction equations. 

7. Calculate Sauter diameter. 

8. Solve the fluidic scalar equations (k, ε, T, Y). 

9. Return to the first step and repeat until convergence. 

THE HETEROGENEOUS MUSIG MODEL (H-MUSIG) 

With the MUSIG model, it is possible to consider a larger number of particle size groups to 

give a better representation of the size distribution. The shortcoming of this approach 

however [29, 30], is related to the droplet groups common velocity.  It is well known that 

larger droplets do not follow the flow and smaller droplets do. By considering one average 

velocity for the droplets, a stratification of droplet sizes from normal fuel injection occurs 

with larger droplets penetrating further into the flow. The larger droplets transport more fuel 

mass than may be expected. To alleviate this problem, it is proposed to extend the 

(homogeneous) MUSIG model into a Multi-phase MUSIG model or a Heterogeneous MUSIG 

model (H-MUSIG). In the extended model, rather than assigning one velocity for all droplet 

groups, classes of groups will be considered with droplet groups in a class sharing the same 

velocity. This suggested approach , displayed schematically in Figure 3, could be seen as a 

blend between a full multi-phase approach and a two-phase approach. If a group is composed 

of one droplet class, then the full multi-phase approach is obtained, whereas if a group is 

composed of all droplet sizes, then the original MUSIG is recovered.  
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H-MUSIG MODEL DESCRIPTION 

In this model, the dispersed phase is divided into N fields, each allowing an arbitrary number 

of sub-size classes [29,30]. Therefore N velocity fields are to be solved where each field is 

subdivided into Ml size groups moving at the same mean algebraic velocity. Ml population 

fraction equations need to be solved along with one set of momentum equations for each 

field. 

The sub-size groups are discretized in order to evaluate the diameter (di) of each size group. 

The droplet average diameter for each sub-size class is calculated using one of the group size 

algorithms described above. The lower and upper boundaries for each field should be set in 

order for the average diameter to be calculated. 

H-MUSIG MODEL FORMULATION  

As described earlier, a continuity or a population balance equation for each sub-size group is 

solved. Let l, lε[1,N] be a group field number; the volume fractions of sub-classes, groups and 

the dispersed phase are related as follows: 

! i = !d fi = !Fl
fFl ,i  (56) 

where fi is the size fraction of the polydispersed phase which appears in group sub-size i, fl,i is 

the population fraction of sub-group size i in the field l, ρd the density of the dispersed phase, 

αi is the volume fraction of sub-group size i and 

� 

!Fl
is the volume fraction of field l. If Eq. 

(40) is multiplied by mi, the population fraction equation for each sub-size group in class field 

l reduces to 

!

!t
"d#Fl

fFl ,i( ) + $. "d#Fl
fFl ,iuFl

( ) = SFl ,i +
#Fl

#d

fFl ,iSph
 (57) 

Summing over all sub-classes in field l and applying the following additional relations 

SFl
= SFl ,i

i=1

MFk

!
"Fl

"d

fFl ,i
i=1

MFl

! =
"Fl

"d

 (58)                                                                                                      

The continuity equation for each field or the volume fraction equation is found as 

!

!t
"d#Fl

( ) + $. "d#Fl
uFl

( ) = SFl
+
#Fl

#d

Sph
 (59)                                                                
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Additional relations and constraints are further added to this model:  

!d = !Fl
=

l=1

N

" ! i

i=1

N #M

" fFl ,i
i=1

MFl

" = 1 fi

i=1

N #M

" = 1  (60)                                                                                                 

 

The source 

� 

SFl ,i
is the net rate at which mass accumulates in sub-size group i due to 

coalescence of particles of smaller size than i in all field and breakup of particles of larger 

sizes than i in all fields. Mathematicall  

� 

SFl ,i
 is given by 

� 

SFl ,i = Bi,B ! Di,B + Bi,C ! Di,C  (61)                                                                                  
Here the birth and death rates are treated using specific breakup and coalescence models since 

they represents rates in the dispersed phase for all sub-classes with 

 

SFl
= SFl ,i

i=1

MFl

! & SFl
= 0

l=1

N

!   (62)                                                           

The overall continuity of the dispersed phase is derived by summing over all groups using the 

above mentioned relation and is found to be 

!

!t
"d#d( ) + $. "d#duFl

( ) = Sph  (63) 

After solving the population balance equations for each sub-size group, the droplet sauter 

diameter that represents an average representation of the dispersed phase field l is calculated, 

and the phase field calculations are then performed assuming the monodispersed phase for 

each field with the diameter of the phase field being equal to 

ds,Fl
=

1
fFl ,i

dii=1

MFl

!

 (64)                                                                                           

For each field, the  momentum equation that need to be solved (since the velocities differ) is 

given by 

!

!t
"d#Fl

uFl
( ) + $. "d#Fl

uFl
uFl

( ) = %#Fl
$P +

$.#Fl
µturb,d $uFl

+ $uFl

T( ) +#Fl
"dg + FFl

+ M Fl
+ SMFl

  (65)                                                                                                                                    

where 
lF

M  is the source term associated with momentum due to phase change, 
lF

F  is the 

momentum transfer between the dispersed field l phase and the continuous phase, and 
lFMS  is 
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the source term due to the transfer of momentum between different velocity groups due to 

breakup and coalescence processes leading to the formation of particles belonging to other 

groups. 

H-MUSIG MODEL SOLUTION STRATEGY 

The solution algorithm of the system is as follows: 

1. The momentum equations for all phases are solved in order to calculate the velocities 

of the different phase fields and the continuous phase.  

2. The Global continuity equation derived by summing continuity for all phases is than 

solved to calculate the pressure, which is the same for all phases. 

3. The continuity equations or volume fraction equations are then solved to calculate the 

volume fraction of the dispersed phases (note that the volume fraction equations of the 

various phase fields include a source term due to particles break up and coalescence).  

4. Calculate sources due breakup and coalescence. 

5. Solve the population fraction equations for the groups of each droplet phase. 

6. Calculate Sauter diameters of the various phases. 

7. Solve the fluidic scalar equations for all phases (k, ε, T, Y). 

8. Return to the first step and repeat until convergence. 
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COMPARISON BETWEEN MUSIG AND H-MUSIG 

A summary of the differences between MUSIG and H-MUSIG is shown in the table below.  

Table 1  Comparison between homogeneous and inhomogeneous model 

H-MUSIG MUSIG 

Dispersed phase accounts for N phase 

fields or classes  

Dispersed phase accounts for one phase 

field or class 

Each class is subdivided into M groups The class is divided into N groups 

N sets of  momentum equations needs to 

be solved 

1 set of momentum equations needs to be 

solved  

Source term due to break up and coalescence resulting in the birth or death of particle of 

size i in the population balance equations is the same 

The volume fraction equation for each 

class l includes a source term associated 

with the particle break up and coalescence 

contributions (term
lF

S ) 

No Contributions for particle breakup and 

coalescence in the volume fraction 

equation since no other dispersed class is 

present 

Interphase momentum and energy transfer 

term due to the presence of various 

velocity and energy fields are added to the 

momentum and energy equations, 

respectively. 

 

RESULTS AND DISCUSSION 

In what follows, solutions to three two-dimensional multi-phase flow problems are presented 

and discussed. The physical situations for these problems are displayed in Figure 4. Figure 

4(a) represents a rectangular duct in which air enters with a uniform free stream velocity U, 

while fuel (Kerosene is used in all computations due to the unavailability of  the physical 

properties of JP-7 fuel to the author) mixed with air is injected through a nozzle 2 mm in 

diameter in the stream-wise direction through 120° angle. Figure 4(b) is similar to Figure 4(a) 
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with the exception of the domain being cylindrical (axi-symmetric) and as such only half the 

cylindrical enclosure is considered. Figure 4(c) represents the same rectangular duct displayed 

in Figure 4(a) with fuel being injected in the cross-stream direction. The length of the domain 

is L  and its width is W (W=L/4). Turbulent flow results are generated using the k-ε 

turbulence models. Solutions for the above configurations are generated using the various 

methodology and results are compared.  

STREAMWISE INJECTION IN A RECTANGULAR DOMAIN 

The physical domain depicted in Fig. 4(a) is subdivided into 120x102 non-uniform control 

volumes. The length L of the domain is 1 m. The fuel is injected with a velocity of magnitude 

30 m/s through 12 uniform control volumes (each of width .001/12 m) at different injection 

angles (varying uniformly from -60° to 60° as shown in Fig. 4(a)). In order to show the 

applicability of the solutions procedures for fluid flowing at all speeds, results for this 

configuration are generated for fuel injection in both subsonic and supersonic streams.  

Evaporation and mixing of fuel droplets in a subsonic stream  

For the physical situation depicted in Fig. 4(a), the Mach number and temperature of the air at 

inlet to the domain are taken to be 0.2 (Mair,inlet=0.2)  and 700 K, respectively. The mixture of 

air and droplets are injected into the domain with a temperature of 350 K with the volume 

fraction of Kerosene in the injected air-fuel mixture being 0.1. The velocity of the injected 

mixture is set at 30 m/s with the angle of injection varying from -60° to 60°. With this 

velocity profile and volume fraction a total of 1.8327 Kg/s/m of fuel are injected into the 

domain.  

Full multiphase results are generated using 5 droplet phases of sizes of 60 µm, 80 µm, 100 µm, 

120 µm, and 140 µm with their inlet volume fractions being  0.0125, 0.0225, 0.03, 0.0225, and 

0.0125 respectively. For the MUSIG model, the droplet phase is divided into 10 groups using 

the equal diameter discretization with the diameter of the smallest droplet set to 55 µm and the 

increment to 10 µm with population fractions of 0.05, 0.075, 0.1, 0.125, 0.15, 0.15, 0.125, 

0.1, 0.075, and 0.05, respectively. For the H-MUSIG model, two droplet phases are 
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considered, each divided into five group sizes discretized using the equal diameter 

discretization. The diameters and population fractions of the various groups are similar to 

those used with MUSIG. An important parameter for comparison is the the percent of the 

injected fuel that has evaporated into the gas field. These percentages are found to be 30.83%, 

27.78%, and 27.27% for the full multiphase method, the H-MUSIG model, and the MUSIG 

model respectively.  

Comparison of results obtained using the various techniques are presented in Figures 5 

through 10. Figure 5 displays the velocity fields for some of the droplet phases. Figure 5(a)-

5(c) depicts the velocity vectors for droplet phases 1 (60 µm in diameter), 3 (100 µm in 

diameter), and 5 (140 µm in diameter) using the full multiphase approach.  H-MUSIG droplet 

velocity vectors are presented in Figures 5(d) and 5(e), while Figure 5(f) shows the droplet 

vector field predicted using MUSIG. Both the multiphase and the H-MUSIG results reveal a 

larger droplet peneteration with increasing droplet diameter, which is physically correct as 

larger particles possess higher inertia and are more capable of penetrating into the domain as 

compared to smaller ones, which align faster with the flow field. Further the path of the 

droplets predicted by MUSIG is between the trajectories of the smaller and larger  droplet 

phases predicted by H-MUSIG (Compare Fig. 5(f) against Figures 5(d) and 5(e)). The same is 

true for H-MUSIG and the full multiphase results (compare Figure 5(d) against Figures 5(a) 

and 5(b); and Figure 5(e) against Figures 5(b) and 5(c)).  

Comparisons in the form of contour maps of the gas phase volume fraction, vapor mass 

fraction, pressure field, and gas temperature fields generated by the various methods are 

depicted in Figures 6, 7, 8, and 9 respectively. As can be seen, the overall structure of the 

various fields are similar even though there exist some variations in the details. The volume 

fraction fields (Figure 6) reflect the droplet velocity fields displayed in Figure 5, with the 

droplet volume fraction decreasing as droplets move in the domain.  As expected, the vapor 

mass fraction (Figure 7) in the gas phase maximizes at exit from the domain with the full 

multiphase results showing less evaporation in the region around the centerline of the domain. 

Pressure and temperature field maps presented in Figures 8 and 9 show similar profiles with 
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slight variation in levels. This is further revealed in the comparison of profiles presented in 

Figure 10. In this figure, u-velocity, gas temperature, pressure, and vapor mass fraction 

profiles across the domain at x=0.5 generated using the various algorithms are compared. The 

gas u-velocity profiles (Figure 10(a)) obtained by the various methods are nearly coincident. 

The temperature profiles however (Figure 10(b)), show some differences in the region around 

the centerline of the domain, with H-MUSIG predicting the lowest gas temperature. This is in 

line with the vapor mass fraction contours presented earlier and the vapor mass fraction 

profiles in Figure 10(d), which reveal higher vapor mass fraction around the centerline 

predicted by H-MUSIG and consequently lower gas temperature. Moreover, profiles in Figure 

10(d) show that full multiphase results are close to H-MUSIG results in area away from the 

centerile and are close to MUSIG results in the region around the centerline. Pressure profiles 

presented in figure 10(c) indicate lower level values with the full multiphase approach. 

Values obtained by MUSIG and H-MUSIG are very close. 

Evaporation and mixing of fuel droplets in a supersonic stream  

For the physical situation depicted in Fig. 4(a), the Mach number and temperature of the air at 

inlet to the domain are taken to be 2 (Mair,inlet=2)  and 700 K, respectively. The mixture of air 

and droplets are injected into the domain with a temperature of 350 K with the volume 

fraction of Kerosene in the injected air-fuel mixture being 0.1. The velocity of the injected 

mixture is set at 30 m/s with the angle of injection varying from -60° to 60°. With this 

velocity profile and volume fraction a total of 1.8327 Kg/s/m of fuel are injected into the 

domain.  

Full multiphase results are generated using 5 droplet phases of sizes of 60 µm, 80 µm, 100 µm, 

120 µm, and 140 µm with their inlet volume fractions being  0.0125, 0.0225, 0.03, 0.0225, and 

0.0125 respectively. For the MUSIG model, the droplet phase is divided into 10 groups using 

the equal diameter discretization with the diameter of the smallest droplet set to 55 µm and the 

increment to 10 µm with population fractions of 0.05, 0.075, 0.1, 0.125, 0.15, 0.15, 0.125, 

0.1, 0.075, and 0.05, respectively. For the H-MUSIG model, two droplet phases are 
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considered, each divided into five group sizes discretized using the equal diameter 

discretization. The diameters and population fractions of the various groups are similar to 

those used with MUSIG. An important parameter for comparison is the the percent of the 

injected fuel that has evaporated in the domain. These percentages are found to be 9.69%, 

12%, and 12.38% for the full multiphase method, the H-MUSIG model, and the MUSIG 

model respectively.  

Comparison of results obtained using the various techniques are presented in Figures 11 

through 16. Figure 11 displays the velocity fields for some of the droplet phases. Figure 

11(a)-11(c) depicts the velocity vectors for droplet phases 1 (60 µm in diameter), 3 (100 µm 

in diameter), and 5 (140 µm in diameter) using the full multiphase approach. H-MUSIG 

droplet velocity vectors are presented in Figures 11(d) and 11(e), while Figure 11(f) shows 

the droplet vector field predicted using MUSIG. Due to the small velocity by which the fuel is 

injected (30 m/s) as compared to the gas velocity (1061 m/s) the spread is much lower than 

the subsonic case. Nevertheless, both the multiphase and the H-MUSIG results reveal a larger 

droplet peneteration with increasing droplet diameter, which is physically correct as larger 

particles possess higher inertia and are more capable of penetrating into the domain as 

compared to smaller ones, which align faster with the flow field. Further the path of the 

droplets predicted by MUSIG is between the trajectories of the smaller and larger  droplet 

phases predicted by H-MUSIG (Compare Fig. 11(f) against Figures 11(d) and 11(e)). The 

same is true for H-MUSIG and the full multiphase results (compare Figure 11(d) against 

Figures 11(a) and 11(b); and Figure 11(e) against Figures 11(b) and 11(c)).  

Comparisons in the form of contour maps of the gas phase volume fraction, vapor mass 

fraction, pressure field, and gas temperature fields generated by the various methods are 

depicted in Figures 12, 13, 14, and 15 respectively. As can be seen, the overall structure of the 

various fields are similar even though there exist some variations in the details. The volume 

fraction fields (Figure 12) reflect the droplet velocity fields displayed in Figure 11, with the 

droplet volume fraction decreasing as droplets move in the domain.  As expected, the vapor 

mass fraction (Figure 13) in the gas phase maximizes at exit from the domain with the full 
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multiphase results showing less evaporation in the region around the centerline of the domain. 

Pressure and temperature field maps presented in Figures 14 and 15 show similar profiles 

with slight variation in levels. This is further revealed in the comparison of profiles presented 

in Figure 16. In this figure, u-velocity, gas temperature, pressure, and vapor mass fraction 

profiles across the domain at x=0.5 generated using the various algorithms are compared. The 

gas u-velocity profiles (Figure 16(a)) obtained by the various methods are nearly coincident. 

The temperature profiles however (Figure 16(b)), show a slight difference in the region 

around the centerline of the domain, with profiles predited by MUSIG  and H-MUSIG being 

almost coincident. Pressure profiles presented in figure 16(c) show similar variations with 

values obtained with the full multiphase method being slightly higher. Moreover, profiles in 

Figure 16(d) show that H-MUSIG results are closer to the full multiphase results with the 

differences between the various profiles being in the region around the centerline and the 

largest evaporation rate being predicted by the full multiphase method. 

CROSS-STREAM INJECTION INTO A SUPERSONIC STREAM IN A RECTANGULAR DOMAIN 

The physical domain depicted in Fig. 4(b) is subdivided into 130x70 non-uniform control 

volumes. The length L of the domain is 1.1 m. The fuel is injected through 12 uniform control 

volumes (each of width .001/12 m) from two nozzles located on the lower and upper walls at 

10 cm from the inlet. The Mach number and temperature of the air at inlet to the domain are 

taken to be 2 (Mair,inlet=2)  and 700 K, respectively. The mixture of air and droplets are injected 

into the domain at a temperature of 350 K with the volume fraction of Kerosene in the 

injected air-fuel mixture being 0.01. The velocity of the injected mixture is 150 m/s and the 

angle of injection is 60°. With this velocity and volume fraction a total of 2.34 Kg/s/m of fuel 

are injected into the domain.  

Full multiphase results are generated using 5 droplet phases of sizes of 60 µm, 80 µm, 100 µm, 

120 µm, and 140 µm with their inlet volume fractions being 0.0025, 0.0045, 0.006, 0.0045, 

and 0.0025,  respectively. For the MUSIG model, the droplet phase is divided into 10 groups 

using the equal diameter discretization with the diameter of the smallest droplet set to 55 µm 
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and the increment to 10 µm with population fractions of 0.05, 0.075, 0.1, 0.125, 0.15, 0.15, 

0.125, 0.1, 0.075, and 0.05, respectively. For the H-MUSIG model, two droplet phases are 

considered, each divided into five group sizes discretized using the equal diameter 

discretization. The diameters and population fractions of the various groups are similar to 

those used with MUSIG. The percentages of the injected fuel that has evaporated into the gas 

field as predicted by the various methods are found to be 10.64%, 13.25%, and 13.41% for 

the full multiphase method, the H-MUSIG model, and the MUSIG model respectively.  

Comparison of results obtained using the various techniques are presented in Figures 17 

through 22. Figure 17 displays the velocity fields for some of the droplet phases. Figure 

17(a)-17(c) depicts the velocity vectors for droplet phases 1 (60 µm in diameter), 3 (100 µm 

in diameter), and 5 (140 µm in diameter) using the full multiphase approach.  H-MUSIG 

droplet velocity vectors are presented in Figures 17(d) and 17(e), while Figure 17(f) shows 

the droplet vector field predicted using MUSIG. As in the streamwise injection case, the 

multiphase and the H-MUSIG results reveal a relatively larger droplet peneteration with 

increasing droplet diameter. Further the path of the droplets predicted by MUSIG is between 

the trajectories of the smaller and larger  droplet phases predicted by H-MUSIG (Compare 

Fig. 17(f) against Figures 17(d) and 17(e)). The same is true for H-MUSIG and the full 

multiphase results (compare Figure 17(d) against Figures 17(a) and 17(b); and Figure 17(e) 

against Figures 17(b) and 17(c)).  

Comparisons in the form of contour maps of the gas phase volume fraction, vapor mass 

fraction, pressure field, and gas temperature fields generated by the various methods are 

depicted in Figures 18, 19, 20, and 21 respectively. The volume fraction fields (Figure 18) 

reflect the droplet velocity fields displayed in Figure 17, with the droplet volume fraction 

decreasing as droplets move in the domain.  As expected, the vapor mass fraction (Figure 19) 

in the gas phase maximizes at exit from the domain. With the injection velocity used, droplets 

are not capable to penetrate into the central core of the domain. Pressure and temperature field 

maps presented in Figures 20 and 21 show similar profiles with slight variation in levels. 

Interaction of both injected streams via pressure is obvious.  
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In Figure 22, the u-velocity, gas temperature, pressure, and vapor mass fraction profiles 

across the domain at x=0.6 (i.e. at 0.5 m from the nozzles) generated using the various 

algorithms are compared. As in the previous cases, the gas u-velocity (Figure 22(a)) 

component and gas temperature (Figure 22(b)) profiles are nearly coincident. Moreover, 

pressure valued (Figure 22(c)) are closer then in the previous cases with MUSIG and H-

MUSIG profiles being on top of each others. Furthermore, vapor mass fraction profiles 

displayed in Figure 22(d) indicate that H-MUSIG results are closer to the full multiphase 

results with maximum differences between the various profiles occuring in the region close to 

the lower and upper walls. 

STREAMWISE INJECTION INTO A SUPERSONIC STREAM IN A CYLINDRICAL DOMAIN 

The physical domain depicted in Figure 4(c) representing the front view of the upper half of a 

cylindrical duct of length 1 m, is subdivided into 120x60 non-uniform control volumes. The 

fuel is injected through 12 uniform control volumes (each of width .001/12 m) from a nozzle 

located at the center of the domain, as shown in Figure 4(c). By neglecting body forces, the 

problem can be solved as an axi-symmetric two-dimensional one. The Mach number and 

temperature of the air at inlet to the domain are taken to be 2 (Mair,inlet=2)  and 700 K, 

respectively. The mixture of air and droplets are injected into the domain at a temperature of 

350 K with the volume fraction of Kerosene in the injected air-fuel mixture being 0.5. The 

velocity of the injected mixture is 150 m/s and the angle of injection varies between 0° and 

60°, measured from the centerline of the nozzle. With this velocity and volume fraction a total 

of  2.01349e-2 Kg/s/rad of fuel are injected into the domain.  

Full multiphase results are generated using 5 droplet phases of sizes of 60 µm, 80 µm, 100 µm, 

120 µm, and 140 µm with their inlet volume fractions being 0.0625, 0.1125, 0.15, 0.1125, 

0.0625,  respectively. For the MUSIG model, the droplet phase is divided into 10 groups 

using the equal diameter discretization with the diameter of the smallest droplet set to 55 µm 

and the increment to 10 µm with population fractions of 0.05, 0.075, 0.1, 0.125, 0.15, 0.15, 

0.125, 0.1, 0.075, and 0.05, respectively. For the H-MUSIG model, two variations are 
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considered. In the first, two droplet phases are considered, each divided into five group sizes 

discretized using the equal diameter discretization. In the second, five droplet phases are 

considered, each divided into two group sizes using the equal diameter discretization. The 

diameters and population fractions of the various groups are similar to those used with 

MUSIG. The percentages of the injected fuel that has evaporated into the gas field as 

predicted by the various methods are found to be 9.38%, 8.66%, 10.2%, and 10.1% for the 

full multiphase method, the H-MUSIG model with five droplet phases, the H-MUSIG model 

with two droplet phases, and the MUSIG model respectively.  

Comparison of results obtained using the various techniques are presented in Figures 23 

through 28. Figure 23 displays the velocity fields for some of the droplet phases. Figure 

22(a)-22(c) depicts the velocity vectors for droplet phases 1 (60 µm in diameter), 3 (100 µm 

in diameter), and 5 (140 µm in diameter) using the full multiphase approach.  Figures 22(d)-

(h) are for droplet velocity vectors predicted by H-MUSIG with Figures 22(d)-22(f) 

displaying veclocity vectors for the first, third, and fifth phases for the droplet phases case and 

Figures 22(g) and 22(h) being for the two droplet phases case. Moreover, Figure 22(i) shows 

the droplet vector field predicted using MUSIG. As for the previous cases, larger droplets 

show larger spreading due to their higher inertia.  

Comparisons in the form of contour maps of the gas phase volume fraction, vapor mass 

fraction, pressure field, and gas temperature fields generated by the various methods are 

depicted in Figures 24, 25, 26, and 27 respectively. The general trend in variation resembles 

the previous cases, i.e. the volume fraction of the particles decreases in the stream-wise 

direction (Figure 24), and the mass fraction of the fuel vapor in the gas phase (Figure 25) 

increases in the streamwise direction as more kerosene evaporates. Pressure and temperature 

field maps presented in Figures 26 and 27 show similar profiles. In Figure 28, the u-velocity, 

gas temperature, pressure, and vapor mass fraction profiles across the domain at x=0.5 

generated using the various algorithms are compared. As shown, the gas u-velocity (Figure 

28(a)) component, gas temperature (Figure 28(b)), and pressure (Figure 28(c)) profiles are 

nearly coincident. Significant differences are notices in vapor mass fraction profiles (Figure 
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28(d)) and the increase in the number of phases in H-MUSIG has improved the profile away 

from the center where it is nearly coincident with the full multi-phase profile. However in the 

core region the 5 phases H-MUSIG solution predicts lower values than MUSIG and the two-

phase H-MUSIG, which are closer to the full multi-phase values there. 

CLOSING REMARKS 

Three numerical methods following a full multiphase approach, (ii) a MUlti-SIze Group 

(MUSIG) approach, and (iii) a Heterogeneous MUSIG (H-MUSIG) approach for the 

prediction of mixing and evaporation of liquid fuel injected into a stream of air flowing at any 

speed were developed. The numerical procedures were formulated, following a Eulerian 

approach, within a pressure-based fully conservative Finite Volume method. The k-ε  two-

equation model was used to account for the droplet and gas turbulence with modifications to 

account for compressibility at high speeds. The relative performance of the three approaches 

was assessed by solving for mixing and evaporation in three configurations involving droplets 

sprayed in the stream-wise and cross-stream directions in subsonic and supersonic streams 

flowing in rectangular and cylindrical domains.  

Results, displayed in the form of droplet velocity vectors, contour plots, and axial profiles 

indicate that solutions obtained by the various techniques exhibit similar behavior. 

Differences in values are relatively small with the largest being associated with droplet 

volume fractions and vapor mass fraction in the gas phase. This is attributed to the fact that 

with MUSIG and H-MUSIG no droplet diameter equation is solved and the diameter of the 

various droplet phases are held constant, as opposed to the full multiphase approach. Results 

generated using MUSIG and H-MUSIG could be improved through better representation of 

evaporation in the population balance equations. This will form the subject of future 

developments. 
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FIGURE CAPTIONS 

Figure 1   Schematic of the full multiphase approach. 

Figure 2  Schematic of the MUSIG approach. 

Figure 3   Schematic of the H-MUSIG approach. 

Figure 4  Physical domain for (a) streamwise injection in a rectangular duct, (b) cross-stream 

injection in a rectangular duct, and (c) streamwise injection in a cylindrical duct; (d) 

an illustrative grid. 

Figure 5  Velocity fields predicted by the full multiphase (a,b,c, in increasing droplet size), 

the HMUSIG (d, e, in increasing Sauter diameter) and the MUSIG (f) methods for 

streamwise injection in a subsonic flow field (Min=0.2) in a rectangular domain.  

Figure 6  Air volume fraction fields predicted by the full multiphase (a), the HMUSIG (b), 

and the MUSIG (c) methods for streamwise injection in a subsonic flow field 

(Min=0.2) in a rectangular domain.  

Figure 7  Vapor Mass fraction fields predicted by the full multiphase (a), the HMUSIG (b), 

and the MUSIG (c) methods for streamwise injection in a subsonic flow field 

(Min=0.2) in a rectangular domain.  

Figure 8 Pressure fields predicted by the full multiphase (a), the HMUSIG (b), and the 

MUSIG (c) methods for streamwise injection in a subsonic flow field (Min=0.2) in a 

rectangular domain.  

Figure 9 Gas temperature fields predicted by the full multiphase (a), the HMUSIG (b), and the 

MUSIG (c) methods for streamwise injection in a subsonic flow field (Min=0.2) in a 

rectangular domain.  

Figure 10 Comparison of (a) u-velocity, (b) temperature, (c) pressure, and (d) vapor mass 

fraction profiles across the domain at x=0.5m generated using the full multi-phase, 

MUSIG, and H-MUSIG methods (Min=0.2, Streamwise injection in a rectangular 

domain). 
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Figure 11 Velocity fields predicted by the full multiphase (a,b,c, in increasing droplet size), 

the HMUSIG (d, e, in increasing Sauter diameter) and the MUSIG (f) methods for 

streamwise injection in a Supersonic flow field (Min=2) in a rectangular domain.  

Figure 12 Air volume fraction fields predicted by the full multiphase (a), the HMUSIG (b), 

and the MUSIG (c) methods for streamwise injection in a supersonic flow field 

(Min=2) in a rectangular domain.  

Figure 13 Vapor mass fraction fields predicted by the full multiphase (a), the HMUSIG (b), 

and the MUSIG (c) methods for streamwise injection in a supersonic flow field 

(Min=2) in a rectangular domain.  

Figure 14 Pressure fields predicted by the full multiphase (a), the HMUSIG (b), and the 

MUSIG (c) methods for streamwise injection in a supersonic flow field (Min=2) in a 

rectangular domain.  

Figure 15 Gas temperature fields predicted by the full multiphase (a), the HMUSIG (b), and 

the MUSIG (c) methods for streamwise injection in a supersonic flow field (Min=2) 

in a rectangular domain. 

Figure 16 Comparison of (a) u-velocity, (b) temperature, (c) pressure, and (d) vapor mass 

fraction profiles across the domain at x=0.5m generated using the full multi-phase, 

MUSIG, and H-MUSIG methods (Min=2, Streamwise injection in a rectangular 

domain). 

Figure 17 Velocity fields predicted by the full multiphase (a,b,c, in increasing droplet size), 

the HMUSIG (d, e, in increasing Sauter diameter) and the MUSIG (f) methods for 

Cross-stream injection in a supersonic flow field (Min=2) in a rectangular domain. 

Figure 18 Air volume fraction fields predicted by the full multiphase (a), the HMUSIG (b), 

and the MUSIG (c) methods for cross-stream injection in a supersonic flow field 

(Min=2) in a rectangular domain.  

Figure 19 Vapor mass fraction fields predicted by the full multiphase (a), the HMUSIG (b), 

and the MUSIG (c) methods for cross-stream injection in a supersonic flow field 

(Min=2) in a rectangular domain.  
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Figure 20 Pressure fields predicted by the full multiphase (a), the HMUSIG (b), and the 

MUSIG (c) methods for cross-stream injection in a supersonic flow field (Min=2) in 

a rectangular domain.  

Figure 21 Gas temperature fields predicted by the full multiphase (a), the HMUSIG (b), and 

the MUSIG (c) methods for cross-stream injection in a supersonic flow field 

(Min=2) in a rectangular domain.  

Figure 22 Comparison of (a) u-velocity, (b) temperature, (c) pressure, and (d) gas turbulent 

viscosity profiles across the domain at x=0.5m generated using the full multi-phase, 

MUSIG, and H-MUSIG methods (Min=2, cross-stream injection in a rectangular 

domain). 

Figure 23 Velocity fields predicted by the full multiphase (a,b,c, in increasing droplet size), 

the HMUSIG with 5 droplet phases (2 groups per phase) (d, e,f, in increasing Sauter 

diameter), the  HMUSIG with 2 droplet phases (5 groups per phase) (g, h, in 

increasing Sauter diameter),and the MUSIG (i) methods for streamwise injection in 

a supersonic flow field (Min=2) in a cylindrical domain. 

Figure 24 Volume fraction fields predicted by the full multiphase (a), the HMUSIG with five 

droplet phases (2 groups per phase)(b), the HMUSIG with tow droplet phases (5 

groups per phase)(c), and the MUSIG (d) methods for streamwise injection in a 

supersonic flow field (Min=2) in a cylindrical domain.  

Figure 25 Vapor mass fraction fields predicted by the full multiphase (a), the HMUSIG with 

five droplet phases (2 groups per phase)(b), the HMUSIG with tow droplet phases 

(5 groups per phase)(c), and the MUSIG (d) methods for streamwise injection in a 

supersonic flow field (Min=2) in a cylindrical domain.  

Figure 26 Pressure fields predicted by the full multiphase (a), the HMUSIG with five droplet 

phases (2 groups per phase)(b), the HMUSIG with tow droplet phases (5 groups per 

phase)(c), and the MUSIG (d) methods for streamwise injection in a supersonic 

flow field (Min=2) in a cylindrical domain.  
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Figure 27 Gas temperature fields predicted by the full multiphase (a), the HMUSIG with five 

droplet phases (2 groups per phase)(b), the HMUSIG with tow droplet phases (5 

groups per phase)(c), and the MUSIG (d) methods for streamwise injection in a 

supersonic flow field (Min=2) in a cylindrical domain.  

Figure 28 Comparison of (a) u-velocity, (b) temperature, (c) pressure, and (d) vapor mass 

fraction profiles across the domain at x=0.5m generated using the full multi-phase, 

MUSIG, and H-MUSIG methods (Min=2, Streamwise injection in an Axi-

Symmetric domain). 

 


